

The BGA framework at a glance

Intro

The BGA framework helps you to build a online
board game adaptation:
● That will be played in realtime.
● That will be played by several human players.
● That will be played from an internet browser.
● That will have rules enforcement (ie : no possibility to cheat).

This presentation shows at a glance how BGA
framework is working
After reading this presentation, you'll be able to understand how a game is running on the
BGA platform.
We won't go into details, in order you can have a good overview of the platform, and
afterwards immediately understand « which component is doing what ».

Clients & server

Here's an overview of the BGA
architecture.

3 players : Alice, Bob and Charlie
are playing a game on the BGA
server using their web browser.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Clients & server

While developing your game logic,
you'll have to work on both server
side and client side.

Let's see what's on each side.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

The server side

On the server side, you'll find 3
components :

● The game database :

This is the current state of the
game (ex : scores, tokens place on
board, which card is where...)

● The game logic :

This is the rules of the game. The game
logic ensures that it's not possible to
cheat (« rules enforcement »).

● The game resources :

This is what's going to be downloaded to
be used by the client browsers (ex :
images, stylesheets, ...).

BGA serverBGA server

Game
database

Game
logic (rules)

Game
resources

The client side

On the client side, you'll find the
user interface (UI).

The user interface manage all what
is displayed to the user (ex : « this
token has moved from A to B »),
and make possible all user actions
on the game (ex : « a click on this
card plays this card »).

Alice's browserAlice's browser

Game
UI

The client side

To do this, you will use 4 different
types of resources :

● A HTML view which defines the
basic layout of your game UI.

● Some images to display the
game art.

● A CSS stylesheet which defines
the style and position of elements
of your game UI.

● A javascript script which
defines the mechanisms of your
UI (ex : click on this button trigger
this action).

Alice's browserAlice's browser

Game
UI

ImagesHTML
view

Stylesheet Javascript

Summary : technologies
used

The game database is using MySQL.

The game logic is using the PHP language.

The game ressources, used for the user interface, are using :

HTML language
(HTML4)

CSS
stylesheet

Javascript script
(with Dojo framework)

Information flow

Now, let's have a look on how all
these components interact with a
simple example.

Our three players A, B and C are
starting a game together. The name
of this fake game is «mygame ».

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Creating a new game

As soon as everyone accept to
start the game, your PHP method
« setupNewGame » is called (from
game logic).

This method must setup the initial
game situation, as described in
game rules, ie you have to create
the right SQL statements to
initialize the database according to
the game rules.

This is it, you can now welcome
your players !

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« setupNewGame »« setupNewGame »

Loading the game

Alice's browser requests to load the
game with the path :

« /mygame?table=9999 »

Where « 9999 » is the identifier of
the table.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

http://boardgamearena.com/mygame?table=9999

Loading the game

At first, we have to gather all
informations about the current
game situation in order Alice's
browser can setup game situation
on client side.

For this, your « getAllDatas » PHP
method is called.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« getAllDatas »« getAllDatas »

Loading the game

Your getAllDatas method gather all
information Alice can see from the
game (and not the cards in the
hand of Bob!), and return this data.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« getAllDatas » = « getAllDatas » =

Loading game

Then, we have to generate for Alice
a classical webpage where she can
play « mygame ». Of course, this
webpage is in classic HTML.

This is the view of the game.

You can use some logic to create
some dynamic HTML page, but
most of the time we'll let the client
do the biggest part of the game
setup and return a simple piece of
static HTML here.

Note that the HTML generated
embed automatically the data
previously generated (in « json »
format).

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

HTML
(inc data
for Alice)

Loading the game

The HTML webpage and all
information are returned to Alice...

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Loading the game

Then, like any classic webpages,
resources are downloaded : your
images, your javascript and your
css stylesheet.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Loading the game

Finally, your « setup » javascript
method is called.

In this method, you can use the
data returned by the server
(« Alice data ») to finalize the
game setup for Alice.

Ex : wow, Alice starts the game
with 3 money tokens. Let's set her
money counter to « 3 ».

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« setup » « setup »

Loading the game

This is it !

Alice has now a view of the current
game situation, and she's ready to
play.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Loading the game

Of course the same thing
happened to Bob and Charlie.

Now, everyone is ready to play!

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

Making a move

It's Alice turn. She is the « active
player ».

Let say Alice want to play a card,
and then clicks on a card.

BGA serverBGA server

Alice's browserAlice's browser
Bob's

browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« clic »

Making a move

During the initial « setup » of the
page, we setup a handler for this
« clic » event for this card.

Let say this handler is a javascript
method call « OnClicMyMethod ».

 OnClicMyMethod is called.

BGA serverBGA server

Alice's browserAlice's browser
Bob's

browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« clic »

«onClicMyMethod» «onClicMyMethod»

Making a move

OnClicMyMethod gets the ID of the
Alice's card (ex : 99), and send a
request to BGA server at this url :

/mygame/mygame/playAcard.html?
card=99

BGA serverBGA server

Alice's browserAlice's browser
Bob's

browser

Bob's
browser

Charlie's
browser

Charlie's
browser

« clic »

«onClicMyMethod» «onClicMyMethod»

/mygame/mygame/playAcard.html?card=99

Making a move

On server side, your corresponding
method « playAcard » is called,
with the id of the card played in
parameter.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

/mygame/mygame/playAcard.html?card=99

«playAcard(99)» «playAcard(99)»

Making a move

Your first work, on this method, is to
check if this is a right move :
● Is Alice the active player really ?
● Can she play a card at this
moment of the game ?
● Does she really have this card in
hand ?
● ...

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

/mygame/mygame/playAcard.html?card=99

«playAcard(99)» «playAcard(99)»

Making a move

Done !

Now, you just have to apply the
rules of the game to the current
situation.

Let's say the card played by Alice
gives her 2 money tokens. We write
in the database that she has 2
more money tokens and that her
card is now discarded (and that
Bob is the new active player).

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

/mygame/mygame/playAcard.html?card=99

«playAcard(99)» «playAcard(99)»

Making a move

Now, we have to notify all the
players that the situation has
evolved.

Note that we can't notify only Alice
here. All players must be notified
that she has played a card and got
2 money tokens.

The BGA framework proposes a
simple method to create and send
notifications to players :
« notifyAllPlayers ».

Now let's notify all players that Alice
got 2 money tokens...

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

/mygame/mygame/playAcard.html?card=99

«playAcard(99)» «playAcard(99)»

Making a move

Let's name our notification
« takeMoneyToken ».

We associate to the notification a
little packet of data saying that the
concerned player is Alice and that
the number of token is 2.

The notification is sent to all
players.

BGA serverBGA server

Alice's
browser

Alice's
browser

Bob's
browser

Bob's
browser

Charlie's
browser

Charlie's
browser

/mygame/mygame/playAcard.html?card=99

«playAcard(99)» «playAcard(99)»

« takeMoneyToken »

Making a move

Let's have a look on what happend
on Bob's browser.

He receives a « takeMoneyToken »
notification. Automatically, your
associated javascript method
« notif_takeMoneyToken » is
called, with arguments saying that it
concerns Alice and that the number
of money tokens is 2.

BGA serverBGA server

Bob's browserBob's browser
Alice's

browser

Alice's
browser

Charlie's
browser

Charlie's
browser

…/playAcard.html?...
« takeMoneyToken »

«notif_takeMoneyToken» «notif_takeMoneyToken»

Making a move

… and finally, your
notif_takeMoneyToken just have to
increase money tokens number of
Alice by 2 on the web page.

Of course the same thing happens
on Alice's and Charlie's browser, so
everyone knows that Alice is
wealthier.

BGA serverBGA server

Bob's browserBob's browser
Alice's

browser

Alice's
browser

Charlie's
browser

Charlie's
browser

…/playAcard.html?...
« takeMoneyToken »

«notif_takeMoneyToken» «notif_takeMoneyToken»

Making a move

Afterwards, two additional
notifications are sent to notify
players that Alice's card has been
discarded and that it's now Bob's
turn.

And this is it : Bob can take some
action, and so on...

BGA serverBGA server

Bob's
browser

Bob's
browserAlice's

browser

Alice's
browser

Charlie's
browser

Charlie's
browser

…/playAcard.html?...

Summary

● You know what is managed on the server side, and what is manager on the client
(browser) side.

● You know which technology is used for each part of the game adaptation.

● You know what happened during basic steps of the game lifecycle : game setup,
page load and making a move.

● You understand the concepts of game database, game view, game action and
notification.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31

